Rice

not annotated - annotated - LINNAEUS only

20719251

Diversification and evolution of the avirulence gene AVR-Pita1 in field isolates of Magnaporthe oryzae.

Rice blast disease is the single most destructive plant disease that threatens stable rice production worldwide. Race-specific resistance to the rice blast pathogen has not been durable and the mechanism by which the resistance is overcome remains largely unknown. Here we report the molecular mechanisms of diversification and the instability of the avirulence gene AVR-Pita1 in field strains of Magnaporthe oryzae interacting with the host resistance gene Pi-ta and triggering race-specific resistance. Two-base-pair insertions resulting in frame-shift mutations and partial and complete deletions of AVR-Pita1 were identified in virulent isolates. Moreover, a total of 38 AVR-Pita1 haplotypes encoding 27 AVR-Pita1 variants were identified among 151 avirulent isolates. Most DNA sequence variation was found to occur in the exon region resulting in amino acid substitution. These findings demonstrate that AVR-Pita1 is under positive selection and mutations of AVR-Pita1 are responsible for defeating race-specific resistance in nature.

21600998

The cell cycle gene MoCDC15 regulates hyphal growth, asexual development and plant infection in the rice blast pathogen Magnaporthe oryzae.

Rice blast, caused by the pathogen Magnaporthe oryzae, is a serious hindrance to rice production and has emerged as an important model for the characterization of molecular mechanisms relevant to pathogenic development in plants. Similar to other pathogenic fungi, conidiation plays a central role in initiation of M.oryzae infection and spread over a large area. However, relatively little is known regarding the molecular mechanisms that underlie conidiation in M. oryzae. To better characterize these mechanisms, we identified a conidiation-defective mutant, ATMT0225B6 (MoCDC15(T-DNA)), in which a T-DNA insertion disrupted a gene that encodes a homolog of fission yeast cdc15, and generated a second strain containing a disruption in the same allele (DeltaMoCDC15(T-DNA)). The cdc15 gene has been shown to act as a coordinator of the cell cycle in yeast. Functional analysis of the MoCDC15(T-DNA) and DeltaMoCDC15(T-DNA) mutants revealed that MoCDC15 is required for conidiation, preinfection development and pathogenicity in M. oryzae. Conidia from these mutants were viable, but failed to adhere to hydrophobic surface, a crucial step required for subsequent pathogenic development. All phenotypic defects observed in mutants were rescued in a strain complemented with wild type MoCDC15. Together, these data indicate that MoCDC15 functions as a coordinator of several biological processes important for pathogenic development in M. oryzae.

20807375

OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis.

Rice OsEDR1 is a sequence ortholog of Arabidopsis EDR1. However, its molecular function is unknown. We show here that OsEDR1-suppressing/knockout (KO) plants, which developed spontaneous lesions on the leaves, have enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo) causing bacterial blight disease. This resistance was associated with increased accumulation of salicylic acid (SA) and jasmonic acid (JA), induced expression of SA- and JA-related genes and suppressed accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC), the direct precursor of ethylene, and expression of ethylene-related genes. OsEDR1-KO plants also showed suppressed production of ethylene. Knockout of OsEDR1 suppressed the ACC synthase (ACS) gene family, which encodes the rate-limiting enzymes of ethylene biosynthesis by catalysing the formation of ACC. The lesion phenotype and enhanced bacterial resistance of the OsEDR1-KO plants was partly complemented by the treatment with ACC. ACC treatment was associated with decreased SA and JA biosynthesis in OsEDR1-KO plants. In contrast, aminoethoxyvinylglycine, the inhibitor of ethylene biosynthesis, promoted expression of SA and JA synthesis-related genes in OsEDR1-KO plants. These results suggest that ethylene is a negative signalling molecule in rice bacterial resistance. In the rice-Xoo interaction, OsEDR1 transcriptionally promotes the synthesis of ethylene that, in turn, suppresses SA- and JA-associated defence signalling.