cabbage
not annotated - annotated - LINNAEUS only
21521136
Host plant effects on alkaline phosphatase activity in the whiteflies, Bemisia tabaci Biotype B and Trialeurodes vaporariorum.
Bemisia tabaci (Gennadius) B-biotype and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) often coexist on greenhouse-grown vegetable crops in northern China. The recent spread of B. tabaci B-biotype has largely replaced T. vaporariorum, and B-biotype now overlaps with T. vaporariorum where common hosts occur in most invaded areas. The impact of the B-biotype on the agro eco system appears to be widespread, and involves the ability to compete with and perhaps replace other phytophages like T. vaporariorum. An emerging hypothesis is that the B-biotype is physiologically superior due at least in part to an improved ability to metabolically utilize the alkaline phosphatase pathway. To test this hypothesis, alkaline phosphatase activity was studied in the B-biotype and T. vaporariorum after feeding on a number of different hosts for a range of durations, with and without host switching. Alkaline phosphatase activity in T. vaporariorum was 1.45 to 2.53-fold higher than that of the B-biotype when fed on tomato for 4 and 24 h, or switched from tomato to cotton and cabbage for the same durations. However, alkaline phosphatase activity in the B-biotype was 1.40 to 3.35-fold higher than that of T. vaporariorum when the host switching time was -72 and -120 h on the same plant. Both short-term (4 h) and long-term (72 h) switching of plant hosts can significantly affect the alkaline phosphatase activity in the two species. After -120 h, feeding on tomato and cotton alkaline phosphatase activity in the B-biotype was significantly higher than that of T. vaporariorum. It was shown that alkaline phosphatase aids the species feeding on different plant species, and that the B-biotype is physiologically superior to T. vaporariorum in utilizing the enzyme compared to T. vaporariorum over longer periods of feeding.
21155771
Growth and reproductive costs of larval defence in the aposematic lepidopteran Pieris brassicae.
1. Utilization of plant secondary compounds for antipredator defence is common in immature herbivorous insects. Such defences may incur a cost to the animal, either in terms of survival, growth rate or in the reproductive success. 2. A common defence in lepidopterans is the regurgitation of semi-digested material containing the defensive compounds of the food plant, a defence which has led to gut specialization in this order. Regurgitation is often swift in response to cuticular stimulation and deters predators from consuming or parasitizing the larva. The loss of food and other gut material seems likely to impact on fitness, but evidence is lacking. 3. Here, we raised larvae of the common crop pest Pieris brassicae on commercial cabbage leaves, simulated predator attacks throughout the larval period, and measured life-history responses. 4. We found that the probability of survival to pupation decreased with increasing frequency of attacks, but this was because of regurgitation rather than the stimulation itself. There was a growth cost to the defence such that the more regurgitant that individuals produced over the growth period, the smaller they were at pupation. 5. The number of mature eggs in adult females was positively related to pupal mass, but this relationship was only found when individuals were not subjected to a high frequency of predator simulation. This suggests that there might be cryptic fitness costs to common defensive responses that are paid despite apparent growth rate being maintained. 6. Our results demonstrate a clear life-history cost of an antipredator defence in a model pest species and show that under certain conditions, such as high predation threat, the expected relationship between female body size and potential fecundity can be disrupted.