silkworm
not annotated - annotated - LINNAEUS only
20825506
Transcription factors BmPOUM2 and BmBetaFTZ-F1 are involved in regulation of the expression of the wing cuticle protein gene BmWCP4 in the silkworm, Bombyx mori.
In Bombyx mori, the wing cuticle protein gene BmWCP4 is expressed specifically in the epidermis at the onset and mid-stage of pupation and is responsible for the formation of the pupal cuticle during the larval-pupal metamorphosis. The gene consists of four exons and three introns and is present as a single copy in the genome. Its expression was up-regulated by 20-hydroxyecdysone (20E) and the 20E-induced expression was suppressed by juvenile hormone (JH) III. The upstream regulatory sequence region of the BmWCP4 gene was cloned and the regulatory elements responsible for 20E induction were identified. Two cis-regulatory elements (CREs) bound by the transcription factors BmPOUM2 and BmBetaFTZ-F1 were identified that mediated 20E-regulated expression of this gene. An electrophoretic mobility shift assay detected two nuclear proteins isolated from the epidermis and the BmN cell line that specifically bound to the POU and BetaFTZ-F1 CREs, respectively. BmPOUM2 recombinant protein explicitly bound to the POU CRE. Developmental and 20E-induced expression of the BmWCP4, BmPOUM2 and BmBetaFTZ-F1 genes showed that BmPOUM2 and BmBetaFTZ-F1 were initially expressed, followed by BmWCP4. These data suggest that the 20E-induced expression of BmWCP4 is mediated by the transcription factors BmPOUM2 and BmBetaFTZ-F1 binding to their CREs in the regulatory sequence region of the BmWCP4 gene.
21521139
A review of the implications of heterozygosity and inbreeding on germplasm biodiversity and its conservation in the silkworm, Bombyx mori.
Abstract Silkworm genebanks assume paramount importance as the reservoirs of biodiversity and source of alleles that can be easily retrieved for genetic enhancement of popular breeds. More than 4000 Bombyx mori L (Lepidoptera: Bombycidae) strains are currently available and these strains are maintained through continuous sibling mating. This repeated sibling mating makes the populations of each strain more homozygous, but leads to loss of unique and valuable genes through the process of inbreeding depression. Hence, it is essential to maintain a minimal degree of heterozygosity within the population of each silkworm strain, especially in the traditional geographic strains, to avoid such loss. As a result, accurate estimation of genetic diversity is becoming more important in silkworm genetic resources conservation. Application of molecular markers help estimate genetic diversity much more accurately than that of morphological traits. Since a minimal amount of heterozygosity in each silkworm strain is essential for better conservation by avoiding inbreeding depression, this article overviews both theoretical and practical importance of heterozygosity together with impacts of inbreeding depression and the merits and demerits of neutral molecular markers for measurements of both heterozygosity and inbreeding depression in the silkworm Bombyx mori.
21349119
Differentially expressed genes in silkworm cell cultures in response to infection by Wolbachia and Cardinium endosymbionts.
Wolbachia and Cardinium are bacterial endosymbionts that are widely distributed amongst arthropods. Both cause reproductive alterations, such as cytoplasmic incompatibility, parthenogenesis and feminization. Here we studied differentially expressed genes in Wolbachia- and Cardinium-infected Bm-aff3 silkworm cells using a silkworm microarray. Wolbachia infection did not alter gene expression or induce or suppress immune responses. In contrast, Cardinium infection induced many immune-related genes, including antimicrobial peptides, pattern recognition receptors and a serine protease. Host immune responses differed, possibly because of the different cell wall structures of Wolbachia and Cardinium because the former lacks genes encoding lipopolysaccharide components and two racemases for peptidoglycan formation. A few possibly non-immune-related genes were differentially expressed, but their involvement in host reproductive alteration was unclear.
21793956
Identification and expression analysis of nervous wreck, which is preferentially expressed in the brain of the male silkworm moth, Bombyx mori.
Sexually dimorphic neural circuits are essential for reproductive behaviour. The molecular basis of sexual dimorphism in the silkworm moth (Bombyx mori) brain, however, is unclear. We conducted cDNA subtraction screening and identified nervous wreck (Bmnwk), a synaptic growth regulatory gene, whose expression is higher in the male brain than in the female brain of the silkworm. Bmnwk was preferentially expressed in the brain at the late pupae and adult stages. In situ hybridization revealed that Bmnwk is highly expressed in the optic lobe of the male moth brain. These findings suggest that Bmnwk has a role in the development and/or maintenance of the optic lobe in the male silkworm brain.